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GAUGE DEPENDENCE OF ULTRAVIOLET BEHAVIOUR OF QCD
D.V.Shirkov, O.V.Tarasov

As is well known, the two-loop contribution to the beta-function of
the QCD running coupling a ¢ can depend on the gauge parameter a. In
this paper the results of renormalization-group (RG) analysis of several
MOM schemes with this dependence are presented. It is shown that for
some cases gauge dependence can essentially influence the ultraviolet
behaviour of ag and, particularly, destroy the asymptotic freedom
property. Possible “physical” implications of these phenomena are
discussed. :

The investigation has been performed at the Laboratory of Theo-
retical Physics, JINR.
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Kak wu3BectHo, npyxnemieBoit ko3dpuumeHt Geta-pyHkumn o¢-
dextupHoro 3apsama KXII @, Moxker comepiaTh 3aBHCHMOCTb OT
xkambpoBouHoro napamerpa. B pabBorte BbimonHen PEHOPMIPYIIIOBOMH
aHau3 HeckobKHX MOM-cxeM, B KOTOpbIX Takas 3aBHCHMOCTb HMeeT
mecro. [loxasano, yto B paAne cmyvyaeB KaTHGPOBOYHAA 3aBHCHMOCTD
CYWECTBEHHO BNMAET Ha y/IbTpagHONETOBOE NOBEMICHHE & ¢ M, B YaCTHO-
CTH, MOXET NPHBOIMTh K HapYILEHHIO acCHMIITOTHYeCKON CBOGOIbI.
O6cyXneHbl BOIMOXKHBIE CIIEACTBHA 3TOTO (eHoMeHa 1A PHUIHUECKHUX
BEJTMUMH.

PaGora Bbinonuena B Jlabopatopuu Teopetnueckoin pusnxcu OUAHU.

{. INTRODUCTION

Experiments that will be accessible in the near future can provide
a possibility of more accurate comparison of QCD predictions. We have
in mind the check of multi-loop contributions as well as effects of
heavy quark masses. This especially concerns the 2-loop corrections.

The results of 2-loop calculations depend on the renormalisation
scheme as well as on the choice of gauge. The scheme and gauge depen-
dence of 2-loop QCD approximation has been considered in papers ’ 1 =5/
It was found ”! that in MOM schemes 2-loop contribution to the
be;a-function of the QCD effective coupling a; (ag being equal to
g /4n) does depend on the gauge parameter 3. Due to this, the ultra-
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violet asymptotic (UVA) behaviour of a; must be defined by the RG
analysis of the system of two differential equations
da(f) o?

da (f - = - - =
:é) =B(a’ a)9 ar =ab(a9 a’)! ez]np (1)

with boundary conditions: @(0) =a, 3(0) = a (where the subscript ’s”
in a , is omitted). Here it is essential that the group generator 8 depends
on the running gauge parameter a.

In this paper we present the results of detailed analysis of the
system (1) taken in 2-loop approximation for five different MOM sche-
mes which are more often used in calculation of observed processes.
It is shown that the UVA behaviour can essentially depend on the
gauge parameter initial value a(0) = a. In three of our schemes for nega-
tive a,the @ UVA is governed by a fixed point in the phase plane (a,a),
see fig. 1. The coordinates of this point depend upon a renormalization
scheme and flavour number f - see the Table. In all five schemes in some
part of the phase plane for a > a, (a) > 0 solutions for a (f) exist only
in the finite interval of logarithmic argument f <f* asat f = £* the run-
ning @ has a pole (the trouble of ’zero-change’” type). For the cases
when the asymptotic freedom (AF) for a takes place we give relation
between the scale parameter A for minimal subtraction scheme and
its value for momentum subtraction schemes. This relation differs
from the analogous one presented in paper &8

2. FORMALISM

We limit ourselves to the case when the gauge is fixed in a covariant
way by the term = - («9# A 2/2a in the Lagrangian. Hence 2 =0 cor-
responds to transverse (Landau) gauge and a=1 to the diagonal
(Feynman) one. Here, the RG solutions for Green functions and
matrix elements can be expressed though the effective (i.e. running)
coupling a and gauge 3, which can be found from system (1).

The generators 8 and b in perturbation theory can be expressed
in the form

2 3
,a) = - - ey
Bla ) ﬁ)l Py ﬁ (a) (4”)2
\ @)
b(a,a) =b(a)-2 + b (a)(Z) + ...
1 2 4n
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To find 2-loop terms for MOM schemes it is possible to start with
B, and b, for MS and make recalculation using relations between
renormahzed a,a in a given MOM scheme and those in MS scheme

a=a__+ Q(a_)a2_/41r+ cee

MS MS MS (3)
a=-a_(1+Kta_)a_—_/4m+...).

MS MS™ MS _ .
Then, wanted B, and b, are expressed through B~ and by with

the help of Q and K which can be found from 1-loop calculations. The
corresponding relations are

_ g¥S _ 2 _ M8, 13-3a 2

By=By =U-2t, b-b @@= -2,
Q

B(a)-ﬁz-b()a(a) (4)
b2(a) = b‘zﬁ(a) + bl(a)[_Q(a) + aK( )] - K( )[B al;la(a)L

MS 38
Bz = 102—?f,

M Q 2

- 531 - - 18 61
bg (2) = me- e -t (5)
K=;.?z__.§. _332 lof

12 2 9

In contradistinction to K that is universal, as it is related only to 1loop
gluon propagator renormalization, the coefficient Q depends on the
choice of a particular MOM scheme / 2-4:6/

2
npa -89, 92,38 10, 0, ,_.

- y = ,0
12 2 4 9 ?nn(“ # )
223 3a 10
M) Q=543+ 2 - f =T _ (0,-u% -4
) 12+ a + 2 9 or a "Aml( " ©°)
2
205 9 3 .2 5-8a-a 10 (6)
Q-""4; Za+=2a R=—="""" _ -1
1) T R 9
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9 3a®  al 23 - 27a + 6a”° 12+ 8R

= Za- = R == - =752

(Iv) Q-22+ 2 5t 1o 9 )
for a ='I?AA£—F-27 _”'21 —ﬂz)

41 23 35+a 10

(V) 9= 2--2a_R - =f,for a =T _ (~p2 -p? —u2)
6 9 9 1Aqq 6)

Here (

1
R [ A02dX 450079, ..

and subscripts. A, 7, q for vertices I' correspond to the gluon, Faddeev-
Popov ghost and quark fields.

3. RESULTS

We present a brief review of our numerical analysis demonstrating
a wide scope of diverse type of UVA behaviour possible in diffevent
MOM schemes. First, three of our schemes obey the fixed point in the
left quadrant, j.e. for some a =a_, a = a, < 0, where both the gene-
rators 8 and b are equal to zero. The coordinates ¢ and a, in these
schemes for several values of flavour number are given in the Table,

Tabl
Scheme f ' a,_

1 3 1.36760 -4.7632

4 1.35767 -4.683%

5 1.33731 -4.5961

6 1.30338 : —4.4983

1I 3 0.51311 -5.0798
4 0.51997 —-4.9866

5 0.52567 —-4.8856

6 0.52956 —-4.7754

11 3 0.26327 -7.2283
4 0.27860 ~7.0077

5 0.29556 —6.7757

6 0.31413 —6.5296
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The behaviour of integral curves for the scheme III are qualitatively
shown in the left half of Fig.1. For scheme I the left singular point is
a stable knot. In its vicinity a(f) =a_+ Aexp(—pf) , p> 0. However,
in the schemes II and III this point turns out to be a focus around which

a(l) =a_+ Aexp(—pt) - sin[of + r].

It must be noted that from the analysis of the behaviour of the
curves ag(a) , a,(a) defined by the relations B(ag,3) = 0,ba,,a) =0
and our estimate of the magnitude of 3-loop corEection to g it is pos-
sible to conclude that the effects of 3-loop contribution on the fixed
point position (and, possibly, on existence) should be essential.

All five schemes have a stable singular point at a - a*- (39-4f)/9,
to which tend solutions from a part of the right quadrant. Solutions
from the other part have a quite different UVA behaviour (a +ce,q » 0
or, in scheme V, to finite value) of ’’ghost-trouble” type. The scheme
IV has only these singularities. In the scheme V the type of the UVA
behaviour of a(f) is essentially dependent on quark number f as well
as on quadrant of phase plane: at a <0 there exists a singular point
for £> 5 and in a > 0 quadrant — second singular point for f > 4 values.
At the same time for f = 3 there exists a region a> ay> 0 in which
our system (1) obeys the solution only for finite values of logarithmic
arguments £ < f, . At £-(, the effective coupling a (f) is finite but
the effective gauge a has a pole singularity (of *zero of the charge”
type). The behaviour of the phase curve for this case is qualitatively
presented by the dotted line in the upper right part of Fig.1.

fixed point -
scheme III ) 1025 scheme V

)

a4
aa119

f=3
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In Fig.2 we show the a () dependence for several cases with a <0
for scheme III. For all our calculations we started from the effective
coupling boundary value z(0)=0.19.

In Fig.3 we give the a (f) dependnece for scheme V for several
positive a values,

s
025

02}

015

010}

00S

Fig2

015

010

005

Fig.3



Note here that for the cases when the AF property is not destroyed,
there exists a simple relation between the scale parameters AMOM and
A

Ms

AMOM(a) = Aif_sexp {Q(a)/28 1.} 7

which was obtained in paper/z/ where the gauge parameter a was
considered as a fixed one. With due account that it >’runs’’ it is necessary
to modify this relation by substituting instead of a its limiting UVA
value

AMOM( a) » AMO}.‘ a¥) (8)

as it follows from the integral curve behaviour presented in the right
quadrant of Fig.1. Here, from a practical point of view the equation (7)
can be considered as acceptable for a rather large interval of variable f.
However, strictly speaking A varies with a (i.e. with ) and for the
description of ’’real asymptotics”, — e.g. in GUT region — it is neces-
sary to use the limiting values as expressed by equation (8).

It is worth mentioning that more accurate analysis needs the
inclusion of heavy quark masses that can be performed on the basis
of the corresponding RG formalism’/7/. It is essential that in this ge-
neralization the gauge dependence can be important on the one-loop
level. '

Note added in proof: When our calculations have been completed
we received paper /97 in which part of results for the case I are obtained.
In this connection we must mention that qualitatively the effect of
existing stable point and destroying the AF property in left quadrant
for the schemes I, II was discovered by V.V.Vladimirov and one of
us (O.T.) in 1982, '

4. PHYSICAL DISCUSSION

The results obtained can be considered as paradoxical, as "QCD
practitioners” usually treat the effective coupling z as an observable
object: it is measured” by experiment; the physical content of asym-
ptotic freedom phenomena is expressed with the help of @ behaviour,
the UV extrapolation of a (as well as a; and a , of electroweak theory)
forms the basis of numerical estimations in the GUT speculations (lep-
toquark masses and proton decay rate).

Our analysis reveals that, from the principal point of view, the question
of gauge dependence merits as much attention as the problem of scheme
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dependence. From general arguments it follows that the observed quan-
tities (transition matrix elements ) as a whole must be gauge indepen-
dent. This property can be formulated for each given order of perturba-
tion thery (as it is well known from the practice of QED calculations).
However, theoretical results referred to the concrete renormalization
scheme, include effects of the RG summation of infinite sequences
of the leading and subleading logarithms in all orders of perturbation
theory. Bisides, in the RG calculations we start with approximate ex-
pression obtained by truncating the expansion in noncovariant object.
Due to this, the property of gauge invariance, like the scheme inde-
pendence, can be easily violated. Its restoration needs a special pro-
cedure,

From the practical point of view, it is safely enough to use more
popular values a= 0 and a=1 because, as follows from our analysis,
in the strip 0 < a <a*. the effective coupling with sufficient accuracy can
be considered as independent of a. Nevertheless, in some situations,
for example, in infrared QCD analysis (confinement problem), it may
happen to be more preferable to use gauge parameter value out of the
safety region. Thus for the Arbuzov gauge (a =—3)/ 8 it is nec essary
to be careful in conjunction of  the results of infrared analysis with
the UVA.

The authors, are grateful to V.V. V]adlmuov for the help in calcu-
lations, to Drs. A.A. Vladimirov, D.1.Kazakov and A.V.Radyushkin for
the discussions of the results. We are also indebted to Prof. R.Raczka
for stimulating conversation with one of us (D.Sh.) which gave impetus
for completing this investigation.
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